3.60 \(\int \frac{(c x)^m (A+C x^2)}{a+b x^2} \, dx\)

Optimal. Leaf size=76 \[ \frac{(c x)^{m+1} (A b-a C) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{b x^2}{a}\right )}{a b c (m+1)}+\frac{C (c x)^{m+1}}{b c (m+1)} \]

[Out]

(C*(c*x)^(1 + m))/(b*c*(1 + m)) + ((A*b - a*C)*(c*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x
^2)/a)])/(a*b*c*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.0386468, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {459, 364} \[ \frac{(c x)^{m+1} (A b-a C) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{b x^2}{a}\right )}{a b c (m+1)}+\frac{C (c x)^{m+1}}{b c (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[((c*x)^m*(A + C*x^2))/(a + b*x^2),x]

[Out]

(C*(c*x)^(1 + m))/(b*c*(1 + m)) + ((A*b - a*C)*(c*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x
^2)/a)])/(a*b*c*(1 + m))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(c x)^m \left (A+C x^2\right )}{a+b x^2} \, dx &=\frac{C (c x)^{1+m}}{b c (1+m)}-\frac{(-A b (1+m)+a C (1+m)) \int \frac{(c x)^m}{a+b x^2} \, dx}{b (1+m)}\\ &=\frac{C (c x)^{1+m}}{b c (1+m)}+\frac{(A b-a C) (c x)^{1+m} \, _2F_1\left (1,\frac{1+m}{2};\frac{3+m}{2};-\frac{b x^2}{a}\right )}{a b c (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.0537702, size = 56, normalized size = 0.74 \[ \frac{x (c x)^m \left ((A b-a C) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{b x^2}{a}\right )+a C\right )}{a b (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((c*x)^m*(A + C*x^2))/(a + b*x^2),x]

[Out]

(x*(c*x)^m*(a*C + (A*b - a*C)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x^2)/a)]))/(a*b*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 0.036, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( C{x}^{2}+A \right ) \left ( cx \right ) ^{m}}{b{x}^{2}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^m*(C*x^2+A)/(b*x^2+a),x)

[Out]

int((c*x)^m*(C*x^2+A)/(b*x^2+a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C x^{2} + A\right )} \left (c x\right )^{m}}{b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+A)/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((C*x^2 + A)*(c*x)^m/(b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C x^{2} + A\right )} \left (c x\right )^{m}}{b x^{2} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+A)/(b*x^2+a),x, algorithm="fricas")

[Out]

integral((C*x^2 + A)*(c*x)^m/(b*x^2 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 5.37861, size = 204, normalized size = 2.68 \begin{align*} \frac{A c^{m} m x x^{m} \Phi \left (\frac{b x^{2} e^{i \pi }}{a}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{4 a \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{A c^{m} x x^{m} \Phi \left (\frac{b x^{2} e^{i \pi }}{a}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{4 a \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{C c^{m} m x^{3} x^{m} \Phi \left (\frac{b x^{2} e^{i \pi }}{a}, 1, \frac{m}{2} + \frac{3}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )}{4 a \Gamma \left (\frac{m}{2} + \frac{5}{2}\right )} + \frac{3 C c^{m} x^{3} x^{m} \Phi \left (\frac{b x^{2} e^{i \pi }}{a}, 1, \frac{m}{2} + \frac{3}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )}{4 a \Gamma \left (\frac{m}{2} + \frac{5}{2}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**m*(C*x**2+A)/(b*x**2+a),x)

[Out]

A*c**m*m*x*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(4*a*gamma(m/2 + 3/2)) + A*c
**m*x*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(4*a*gamma(m/2 + 3/2)) + C*c**m*m
*x**3*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 3/2)*gamma(m/2 + 3/2)/(4*a*gamma(m/2 + 5/2)) + 3*C*c**m
*x**3*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 3/2)*gamma(m/2 + 3/2)/(4*a*gamma(m/2 + 5/2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C x^{2} + A\right )} \left (c x\right )^{m}}{b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+A)/(b*x^2+a),x, algorithm="giac")

[Out]

integrate((C*x^2 + A)*(c*x)^m/(b*x^2 + a), x)